Vad är pi?

Vad är? / Irrationella tal  / Vad är pi?
Pi-unrolled-720

Vad är pi?

Talet π (pi), även kallat Arkimedes konstant och Ludolphs tal, är en matematisk konstant som representerar förhållandet mellan en cirkels omkrets och diameter. Dess värde är knappt 3,1416 men då talet är irrationellt kan det aldrig skrivas ut exakt med siffror. Beteckningen π infördes troligen 1706, från det grekiska ordet för omkrets, περιφέρεια. π är ofta approximerad som 3,14 och en rationell approximation som är användbar för många syften är 22/7, eller bättre 355/113.

Vi kommer bland annat att lära oss hur vi kan beskriva en cirkel, vad talet pi är för . På ett visst avstånd från medelpunkten finns vad som ibland kallas cirkelns. Talet π (pi), även kallat Arkimedes konstant och Ludolphs tal, är en matematisk konstant. Beteckningen π infördes troligen 1706, från det grekiska ordet för omkrets, περιφέρεια. π är ofta approximerad som 3,14 och en. [a b c d] ”Vad är pi? Talet Pi ≈ 3,14 är en matematisk konstant som definieras som π = omkrets/diameter. Talet används i många matematiska områden med start i geometrin. Mar 2, 2017.

Videon handlar om vad pi är. 1) Pi-dagen som inträffar nu den 14 mars är ju tillägnad talet pi (π ≈ 3,14159. . Vad används talet pi till?

Talet pi är förstås relaterat till när. När det är val i Sverige får alla som har rösträtt gå till vallokalerna för att rösta. Man är då med och bestämmer vilka politiker som ska styra Sverige. Men hur går. Hur kom man första gången fram till värdet av pi, och vem stod för denna bedrift? . som omräknat till vår tids decimaltal anger värdet av pi till 3,16049. ett tal som är mindre än en procent för.

Psykopat. Vad är en psykopat? Vi blickar också tillbaka i tiden och jämför dagens Raspberry Pi-modell med dess .

Vilken av dem som passar bäst beror på vad datorn ska användas till. Fri Tanke, Kungl. Vetenskapsakademien och Stiftelsen för Strategisk Forskning är stolta att presentera ett Pi-symposium som utforskar vad liv är. När du tittar på index kan du hålla utkik efter bokstäverna PI och GI. De berättar nämligen om indexet är ett prisindex eller ett avkastningsindex, och kommer från. Del 3: Vad kan du göra med Raspberry Pi.

1/4 Den hittills mest kraftfulla Raspberry Pi-datorn, Raspberry Pi 3, lanserades i början av 2016. Previous Previous pi. betydelser och användning av ordet. Svensk ordbok online. Gratis att använda. Den fantastiska minidatorn Raspberry Pi upphör aldrig att förvåna.

En spegel som visar de senaste nyheterna, klockslag, ja vad du vill. Vad tycker ni att tro handlar om? Vilket syfte kan tro tänkas fylla för någon som Pi? ”Låt inte ljusen lura er”, säger Pis pappa till sina två söner under en indisk. Här följer en komplett checklista över vad du behöver för att förvandla din Raspberry Pi till en smarta hemmet-hubb. Det går förstås utmärkt att. Hallå där Nima Akbarian, vad är egentligen grejen med talet pi. Pi är ett irrationellt tal med ett oändligt antal decimaler. Detta i sig tycker jag.

Hjärtklappningsbesvär, som extraslag, hårda hjärtslag eller hjärtrusningar under en kort stund, är vanliga och förekommer i alla åldrar. Normalt är det inget att. I den här guiden går vi igenom hur du installerar Rasbian på en Raspberry Pi. Läs hela “Hur funkar det? gratis, online.

Talet π (pi), även kallat Arkimedes konstant och Ludolphs tal, är en matematisk konstant som representerar förhållandet mellan en cirkels omkrets och diameter. Dess värde är knappt 3,1416 men då talet är irrationellt kan det aldrig skrivas ut exakt med siffror. Beteckningen π infördes troligen 1706, från det grekiska ordet för omkrets, περιφέρεια. π är ofta approximerad som 3,14 och en rationell approximation som är användbar för många syften är 22/7, eller bättre 355/113.

De tidigaste kända uppskattningarna av π:s värde härstammar från tiden cirka två årtusenden f.Kr. då babylonierna använde värdet 25/8 = 3,125, och egyptierna enligt Rhindpapyrusen uppskattade π till 256/81 ≈ 3,16. Arkimedes överträffade cirka 250 f.Kr. dessa resultat då han med en geometrisk konstruktion visade att π måste ligga mellan 223/71 och 22/7, motsvarande en noggrannhet på en enhet i tredje decimalen. Betydande framsteg gjordes under nästföljande dryga 1500 år av arabiska, kinesiska och indiska matematiker, kulminerande cirka 1400 med Madhavas beräkning av 11 korrekta decimaler, överträffad av Ghiyath al-Kashis 16 några år senare. Den tyske 1500-talsmatematikern Ludolph van Ceulen vigde större delen av sitt liv åt att beräkna π med Arkimedes metod; han lyckades bestämma talet med 35 decimaler.

Den matematiska analysen har gett upphov till serier och iterationer för π:s exakta värde som i princip gör det möjligt att beräkna talet med önskad precision. Exempel är François Viètes formel från 1593

Gottfried Leibniz formel

och John Wallis produkt

Först att nå 100 decimaler var John Machin, som 1706 använde den nu berömda Machins formel,

kombinerad med Taylorserien för arctan. Efter honom lyckades 1800-talets matematiker beräkna hundratals decimaler för hand. Sedan mitten av 1900-talet har datorer gjort det möjligt att beräkna tusentals, miljontals, miljardtals och biljoner decimaler av π.

Den oändliga decimalutvecklingen har i sig fascinerat. Trots att de första 50 decimalerna räcker för att beräkna det synliga universums omkrets med en noggrannhet av en atomkärnas storlek har det blivit något av en tävling i att beräkna π med så många decimaler som möjligt – det senaste rekordet ligger på 31,4 biljoner (31 415 926 535 897) stycken.

I dagligt bruk avrundas π ofta till 3,14, även om decimalerna fortsätter i oändlighet utan att uppvisa någon regelbundenhet. Talet är irrationellt och transcendent, det vill säga: Det kan inte skrivas som ett bråk mellan två heltal, och det kan inte uttryckas algebraiskt. Det innebär att cirkelns geometriska egenskaper inte kan uttryckas exakt utan talet π och att cirkelns kvadratur är ett problem som inte har någon lösning. Utöver dessa egenskaper är π intressant eftersom det dyker upp på många olika håll inom matematiken, somliga till synes helt utan koppling till det geometriska ursprunget. Talet har studerats av framstående matematiker under alla tider, men flera frågor är ännu ouppklarade.
Det är inte ovanligt att talet approximeras med 22/7 (ungefär 3,143) i beräkningar, vilket kan härledas till Arkimedes.

Beteckningen π, som härstammar från det grekiska ordet περιφέρεια (periferi), valdes 1706 av William Jones för att beteckna talet och standardiserades samma århundrade genom Leonhard Euler. Det råder delade meningar över huruvida tecknet π ska skrivas i rak stil eller kursiv (π eller π). SIS rekommenderar rak stil vilket beskrives i den svenska standarden SS 03 61 07 – Grafisk teknik – Sättningsregler – Matematik och kemi.

Att π är irrationellt bevisades 1761 av Johann Heinrich Lambert. Dess transcendens bevisades 1882 av Ferdinand von Lindemann.

Den mest gäckande ouppklarade frågan är huruvida π är normalt, det vill säga om alla siffror och sifferkombinationer, i alla baser, förekommer med samma sannolikhet som om talet vore helt “slumpmässigt”. Statistiska undersökningar av miljardtals siffror som beräknats med datorer pekar åt det hållet, men matematiska bevis saknas. David H. Bailey och Richard E. Crandall visade dock år 2000 att π är normalt i basen två om en trolig hypotes från kaosteorin är sann.

Det är också okänt huruvida π och e är algebraiskt oberoende, men det är känt att åtminstone det ena av πe och π + e är transcendent. Talet e, kallat Gelfonds konstant, är dock transcendent, liksom π och e, medan e är lika med heltalet −1.

Geometri

π förekommer i många geometriska formler för cirklar, sfärer och andra runda objekt.

180° (grader) motsvarar π radianer.

Analys

Talet π är intimt förbundet med de komplexa talen, vilket följer av de trigonometriska funktionernas förekomst i Eulers formel för den komplexa exponentialfunktionen,

Ett specialfall är Eulers identitet,

som kallades “den märkligaste formeln inom matematiken” av Richard Feynman för att den knyter samman fem av de viktigaste talen: 0, 1, e som är basen för den naturliga logaritmen, den imaginära enheten i utifrån vilken de komplexa talen definieras, och π. Vidare följer exempelvis av residysatsen för kurvintegraler att

Arean av en kvarts enhetscirkel ges av:

Integraler

Några integralformler är

Oändliga serier

Baselproblemet, först löst av Euler (se även Riemanns zetafunktion):

Andra oändliga serier är

Några BBP-formler är

Oändliga produkter

Wallis produkt:

Viètas formel:

Övriga produkter är

Övrigt

Gammafunktionen utvärderad vid 1/2:

Eulers identitet:

Stirlings formel:

och korollariet

Egenskaper av Eulers phi-funktion (se även Fareysekvens):

En formel med det aritmetisk-geometriska medelvärdet :

(där mod är modulofunktionen som ger resten vid division)

Fysik

Heisenbergs osäkerhetsprincip beskriver att både rörelsemängden och positionen hos en partikel inte kan vara kända med hur stor säkerhet som helst. Följande olikhet gäller:

Med Δx osäkerhetsintervall för position, Δp osäkerhetsintervall för rörelsemängd, och h Plancks konstant.

Inom kvantmekaniken är omskalningen så vanlig att den givits en egen beteckning ħ, “h-streck” eller Diracs konstant.

Den magnetiska konstanten μ0 är inom SI definierad som μ0 = 4π×10 H/m. Värdet är dock beroende av valet av enheter.

Den enkla kedjebråksframställningen av π börjar [3, 7, 15, 1, 292, 1, 1, 2, 1, 3, 1, 14, 1, 1, 2, 2, 2, 2, …], och uppvisar ingen regelbundenhet. Genom trunkering av kedjebråket fås de rationella approximationerna 3, 22/7, 333/106, 355/113, 103993/33102, … för π, som i respektive ordning ger 0, 2, 4, 6, 9, … korrekta decimaler.

π kan dock framställas på flera sätt som ett regelbundet generaliserat kedjebråk:

De mest effektiva formlerna för att med datorers hjälp beräkna π är i dag följande:

Machin-liknande formler

Machins formel är i datorernas era fortfarande praktisk för att beräkna π. Dock finns en hel familj av Machin-liknande formler för π, bestående av liknande summor av arctan-funktionen, varav somliga är mer effektiva än Machins ursprungliga. För det tidigare rekordet på över 1 biljon decimaler (1 241 100 000 000) av π, satt 2002 av Yasumasa Kanada med kollegor vid Tokyos universitet, användes följande Machin-liknande formler med fyra termer:

och

Den ena formeln användes till en första uträkning, den andra för att kontrollera resultatet. Beräkningarna gjordes av en 64-noders superdator från Hitachi med 1 terabyte minne och kapaciteten att utföra 2 · 10 operationer per sekund. Beräkningarna tog 602 timmar. En normal utskrift av alla decimalerna skulle fylla 300 miljoner A4-papper.

Andra Machinliknande formler är

Ramanujans och Chudnovskys serier

Srinivasa Ramanujan upptäckte en mängd oändliga serier för π, exempelvis den snabbt konvergerande

Baserat på Ramanujans resultat upptäckte bröderna Chudnovsky formeln

som de använde för att slå flera beräkningsrekord i slutet av 1980-talet, inklusive att 1989 komma först över en miljard decimaler av π. Chudnovskys formel används idag exempelvis av programmen Mathematica och Pifast för att beräkna π.

Iterationer

Två iterationer för att beräkna π är Brent–Salamins algoritm och Borweins algoritm. Borweins algoritm går exempelvis ut på att sätta (Brent–Salamins algoritm har en liknande form)

och sedan iterera

tills önskad noggrannhet uppnåtts och uppskattningen av π därefter ges av 1/an. Fördelen med dessa iterationer gentemot ovan nämnda summationer är att deras konvergens är superlinjär (Se exponentiell): antalet korrekta siffror som läggs till vid varje steg inte är konstant utan ökar. Brent–Salamins algoritm har kvadratisk konvergens, vilket innebär att antalet korrekta siffror fördubblas varje steg – Borweins algoritm till och med fyrdubblar antalet siffror. Nackdelen är att rötterna som ingår är tidskrävande att beräkna. Brent–Salamins och Borweins algoritmer användes 1999 för att beräkna respektive kontrollera 206 158 430 000 decimaler av π, vilket då var ett nytt rekord.

Direkt bestämning av siffror

David H. Bailey, Peter Borwein och Simon Plouffe hittade år 1995 en formel som gör det möjligt att direkt beräkna en godtycklig siffra i π:s binära representation utan att först behöva beräkna de föregående. De binära siffrorna kan översättas till motsvarande i baserna 4, 8, 16 och så vidare (dock ej till 10 för att få fram decimalerna):

Formeln är känd som BBP-formeln, och flera liknande formler har härletts för π såväl som för andra konstanter. En mer effektiv version, Bellards formel, användes av det distribuerade projektet Pihex för att år 2000 beräkna 64 binära siffror i följd omkring den tusenbiljonte (som råkar vara 0).

Simon Plouffe upptäckte 1997 även en algoritm för att beräkna den n:te decimalen av π direkt, men den är dessvärre så långsam att den bara är praktisk för n upp till några tusen. En förbättring av Fabrice Bellard gör metoden praktisk för n upp till några miljoner, och Xavier Gourdon har hittat en metod som är ytterligare något snabbare. Trots dessa framsteg är det snabbaste sättet att bestämma den n:te decimalen fortfarande att beräkna π med alla föregående siffror och plocka ut den sista.

En referens till π finns i Gamla testamentet i Bibeln:

Många skeptiker anser att enligt detta påstående skall π vara exakt 3, vilket de poängterat då de kritiserat Bibelns riktighet. Ekvationen diameter=10, omkrets=30 tillfredsställs dock av alla värden på diameter mellan 9,5 och 9,708 vid avrundning till närmaste heltal. En annan förklaring som cirka år 150 framfördes av den hebreiska rabbin och matematikern Nehemiah är att diametermåttet skulle kunna avse avståndet mellan ytterkanterna medan omkretsen mättes längs innerkanten.

En alternativ tolkning av bibeltexten ifråga är att mätetalet 30 avser det cylinderformade “Havets” rektangulära vertikala omkrets (eller “omfång” som det heter i 1917 års översättning), dvs 10+5+10+5, snarare än dess cirkulära horisontella omkrets 10π.

En läkare och amatörmatematiker vid namn Edward J. Goodwin från delstaten Indiana i USA trodde att π:s transcendenta värde var felaktigt, och lade 1897 fram ett förslag på att bland annat lagstifta följande “nya matematiska sanningar”:

Lagförslaget skickades på remiss till den delstatliga utbildningskommittén som rekommenderade att det skulle godkännas. Av en slump råkade en professor C. A. Waldo dock befinna sig i Indianapolis vid tillfället, och lyckades efter att ha fått reda på förslaget övertala kommittén att rösta ner det. Lagstiftande församlingen har sedan aldrig tagit upp ärendet, och slipper därigenom att ta ställning till förslaget. Se vidare en:Indiana Pi Bill.

År 1998 spreds uppgifter på Internet om att delstaten Alabama skulle ha lagfäst π:s värde till det “bibliska värdet” 3,0. Nyheten var i själva verket ett aprilskämt som parodierade ovan nämnda fall samt kreationisters försök att i New Mexico motarbeta undervisningen om evolutionsteorin. Artikeln skrevs av en fysiker vid namn Mark Boslough.

Några andra approximationer är:

tre korrekta decimaler:

fyra korrekta decimaler:

fyra korrekta decimaler:

en approximation av Ramanujan, fyra korrekta decimaler:

fem korrekta decimaler:

sju korrekta decimaler:

en approximation av Ramanujan, nio korrekta decimaler:

tio korrekta decimaler:

tio korrekta decimaler:

18 korrekta decimaler:

30 korrekta decimaler:

52 korrekta decimaler:

161 korrekta decimaler:

Populärkultur

Talet π är ett av få matematiska objekt som regelbundet dyker upp i populärkulturen.

Framför allt har ett flertal science fiction-författare hänvisat till talet och dess fysikaliska eller metafysiska implikationer. Arthur C. Clarke och Stephen Baxter beskriver exempelvis i Time’s Eye en värld skapad av utomjordingar där en sfär har omkrets–diameter-förhållandet 3, och i Eon av Greg Bear utnyttjas π för att beräkna rymdens krökning. I Carl Sagans roman Contact, som även filmatiserats, upptäcker huvudkaraktären att ett meddelande från universums skapare finns invävt i π – synligt då talet uttrycks i undecimala talsystemet.

I Star Trek-avsnittet Wolf in the Fold tar ett ondskefullt väsen över rymdskeppets dator, med vars hjälp det hotar att förgöra besättningen. Spock beordrar då datorn att med högsta prioritet “beräkna π till den sista decimalen”, vilket försätter den i en oändlig loop som gör den obrukbar för fienden. Omvänt utbrister professor Frink i ett avsnitt av The Simpsons att “π är exakt 3!” för att få full uppmärksamhet i ett rum fyllt av vetenskapsmän.

Sångerskan Kate Bush sjunger på sitt album Aerial en låt med titeln “π”, vars text består av mer än 100 decimaler av π. Hennes fans har dock noterat att flera av decimalerna är felaktiga. Matte Matik hade då redan spelat in sin “Decimaler på pi”, och även han gör fel och tappar bort sig “någonstans mellan 75 och 85”.

Det finns också en film med titeln π, regisserad av Darren Aronofsky, som behandlar sambandet mellan tal och naturen.

Anhängare

Beundrare av talet π brukar uppmärksamma den 14 mars som pi-dagen eftersom dagen i amerikanskt datumformat skrivs 3/14 och kommer från att pi ofta avrundas till 3,14. Pi-approximationsdagen firas 22 juli eftersom 22/7 är en bra approximation, till och med något bättre än 3,14.

Det har blivit en tävling att kunna memorera så många siffror av π som möjligt. Ett halvseriöst ämnesområde, känt som pifilologi, behandlar användandet av minnesregler för att memorera π.

Det finns en rekordlista för pi-memoreringar (se externa länkar nedan). Där finns under NEWS ett verifierat rekord av Chao Lu från Kina som den 20 november 2005 ur minnet lyckades räkna upp π med 67 890 decimaler. Dessutom finns ett overifierat rekord av japanen Akira Haraguchi som, 60 år gammal den 3 oktober 2006, lyckades räkna upp de första 100 000 decimalerna i π. Han slog med detta sitt gamla världsrekord från 2005 på 83 431 decimaler.

Det svenska rekordet är för närvarande på drygt 13 000 decimaler (2016) och innehas av Jonas von Essen.

Daniel Tammet har ett så kallat savant syndrom och har memorerat π till 22 514 decimaler. Han rabblade upp alla siffror korrekt på 5:09:24. “Det tog några veckor att lära sig!” sa han efteråt.
En annan savant är Rüdiger Gamm. Han har lagt 5000 decimaler på minnet.

Nobelpristagaren i fysik Richard Feynman, känd för sitt intresse för huvudräkning, anmärkte en gång att han ville memorera π till den 767:e decimalen. Anledningen är att decimalerna 762 till och med 767 samtliga är nior, och att han då skulle kunna avsluta uppräkningen med “…nio, nio, nio, nio, nio, nio, och så vidare.”

Pi – det fantastiska talet, är en bok (författare David Blatner, 1997) med fakta och anekdoter om π från alla tider; ISBN 91-7738-482-2. Bokens engelska original heter The Joy of Pi och har en egen webbplats för pi-fantaster (se externa länkar nedan). I boken finns ett kapitel om de ovannämnda bröderna Chudnovsky som inte bara fann nya formler för pi-beräkning, utan dessutom hemmabyggde en egen superdator med gigaflop-prestanda.

Litteratur

  English translation by Catriona and David Lischka.

 , engelsk översättning av Stephen Wilson.

 . issue 3 Jan/Feb, issue 4 Mar/Apr, issue 5 May/Jun

Inga kommentarer
Kommentera